Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
J Dent Res ; 99(10): 1192-1198, 2020 09.
Artículo en Inglés | MEDLINE | ID: covidwho-733091

RESUMEN

Dental health care workers are in close contact to their patients and are therefore at higher risk for contracting airborne infectious diseases. The transmission rates of airborne pathogens from patient to dental health care workers are unknown. With the outbreaks of infectious diseases, such as seasonal influenza, occasional outbreaks of measles and tuberculosis, and the current pandemic of the coronavirus disease COVID-19, it is important to estimate the risks for dental health care workers. Therefore, the transmission probability of these airborne infectious diseases was estimated via mathematical modeling. The transmission probability was modeled for Mycobacterium tuberculosis, Legionella pneumophila, measles virus, influenza virus, and coronaviruses per a modified version of the Wells-Riley equation. This equation incorporated the indoor air quality by using carbon dioxide as a proxy and added the respiratory protection rate from medical face masks and N95 respirators. Scenario-specific analyses, uncertainty analyses, and sensitivity analyses were run to produce probability rates. A high transmission probability was characterized by high patient infectiousness, the absence of respiratory protection, and poor indoor air quality. The highest transmission probabilities were estimated for measles virus (100%), coronaviruses (99.4%), influenza virus (89.4%), and M. tuberculosis (84.0%). The low-risk scenario leads to transmission probabilities of 4.5% for measles virus and 0% for the other pathogens. From the sensitivity analysis, it shows that the transmission probability is strongly driven by indoor air quality, followed by patient infectiousness, and the least by respiratory protection from medical face mask use. Airborne infection transmission of pathogens such as measles virus and coronaviruses is likely to occur in the dental practice. The risk magnitude, however, is highly dependent on specific conditions in each dental clinic. Improved indoor air quality by ventilation, which reduces carbon dioxide, is the most important factor that will either strongly increase or decrease the probability of the transmission of a pathogen.


Asunto(s)
Infecciones por Coronavirus/transmisión , Clínicas Odontológicas , Gripe Humana/transmisión , Enfermedad de los Legionarios/transmisión , Sarampión/transmisión , Neumonía Viral/transmisión , Tuberculosis/transmisión , Betacoronavirus , COVID-19 , Humanos , Modelos Teóricos , Pandemias , Riesgo , SARS-CoV-2
2.
Med Hypotheses ; 141: 109781, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-116780

RESUMEN

The world is facing a pandemic of unseen proportions caused by a corona virus named SARS-CoV-2 with unprecedent worldwide measures being taken to tackle its contagion. Person-to-person transmission is accepted but WHO only considers aerosol transmission when procedures or support treatments that produce aerosol are performed. Transmission mechanisms are not fully understood and there is evidence for an airborne route to be considered, as the virus remains viable in aerosols for at least 3 h and that mask usage was the best intervention to prevent infection. Heating, Ventilation and Air Conditioning Systems (HVAC) are used as a primary infection disease control measure. However, if not correctly used, they may contribute to the transmission/spreading of airborne diseases as proposed in the past for SARS. The authors believe that airborne transmission is possible and that HVAC systems when not adequately used may contribute to the transmission of the virus, as suggested by descriptions from Japan, Germany, and the Diamond Princess Cruise Ship. Previous SARS outbreaks reported at Amoy Gardens, Emergency Rooms and Hotels, also suggested an airborne transmission. Further studies are warranted to confirm our hypotheses but the assumption of such way of transmission would cause a major shift in measures recommended to prevent infection such as the disseminated use of masks and structural changes to hospital and other facilities with HVAC systems.


Asunto(s)
Microbiología del Aire , Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/transmisión , Ambiente Controlado , Pandemias , Neumonía Viral/transmisión , Ventilación , Aerosoles , Aire Acondicionado/efectos adversos , Aire Acondicionado/instrumentación , Aire Acondicionado/métodos , Contaminación del Aire Interior , COVID-19 , Infecciones por Coronavirus/prevención & control , Infección Hospitalaria/transmisión , Contaminación de Equipos , Diseño de Equipo , Falla de Equipo , Fómites/virología , Calefacción/efectos adversos , Calefacción/instrumentación , Calefacción/métodos , Humanos , Enfermedad de los Legionarios/epidemiología , Enfermedad de los Legionarios/transmisión , Modelos Biológicos , Pandemias/prevención & control , Neumonía Viral/prevención & control , SARS-CoV-2 , Ingeniería Sanitaria/instrumentación , Síndrome Respiratorio Agudo Grave/epidemiología , Síndrome Respiratorio Agudo Grave/transmisión , Aguas del Alcantarillado/virología , Ventilación/instrumentación , Ventilación/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA